A metabolomics-based approach for the evaluation of off-tree ripening conditions and different postharvest treatments in mangosteen (Garcinia mangostana)
Metabolomics, ISSN: 1573-3890, Vol: 15, Issue: 5, Page: 73
2019
- 13Citations
- 60Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- CrossRef1
- Captures60
- Readers60
- 60
Article Description
Introduction: Metabolomics is an important tool to support postharvest fruit development and ripening studies. Mangosteen (Garcinia mangostana L.) is a tropical fruit with high market value but has short shelf-life during postharvest handling. Several postharvest technologies have been applied to maintain mangosteen fruit quality during storage. However, there is no study to evaluate the metabolite changes that occur in different harvesting and ripening condition. Additionally, the effect of postharvest treatment using a metabolomics approach has never been studied in mangosteen. Objectives: The aims of this study were to evaluate the metabolic changes between different harvesting and ripening condition and to evaluate the effect of postharvest treatment in mangosteen. Methods: Mangosteen ripening stage were collected with several different conditions (“natural on-tree”, “random on-tree” and “off-tree”). The metabolite changes were investigated for each ripening condition. Additionally, mangosteen fruit was harvested in stage 2 and was treated with several different treatments (storage at low temperature (LT; 12.3 ± 1.4 °C) and stress inducer treatment (methyl jasmonate and salicylic acid) in comparison with control treatment (normal temperature storage) and the metabolite changes were monitored over the course of 10 days after treatment. The metabolome data obtained from gas chromatography coupled with mass spectrometry were analyzed by multivariate analysis, including hierarchical clustering analysis, principal component analysis, and partial to latent squares analysis. Results: “On-tree” ripening condition showed the progression of ripening process in accordance with the accumulation of some aroma precursor metabolites in the flesh part and pectin breakdown in the peel part. Interestingly, similar trend was found in the “off-tree” ripening condition although the progression of ripening process observed through color changes occurred much faster compared to “on-tree” ripening. Additionally, low-temperature treatment is shown as the most effective treatment to prolong mangosteen shelf-life among all postharvest treatments tested in this study compared to control treatment. After postharvest treatment, a total of 71 and 65 metabolites were annotated in peel and flesh part of mangosteen, respectively. Several contributed metabolites (xylose, galactose, galacturonic acid, glucuronate, glycine, and rhamnose) were decreased after treatment in the peel part. However, low-temperature treatment did not show any significant differences compared to a room temperature treatment in the flesh part. Conclusions: Our findings clearly indicate that there is a similar trend of metabolic changes between on-tree and off-tree ripening conditions. Additionally, postharvest treatment directly or indirectly influences many metabolic processes (cell-wall degrading process, sweet-acidic taste quality) during postharvest treatment.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85065255576&origin=inward; http://dx.doi.org/10.1007/s11306-019-1526-1; http://www.ncbi.nlm.nih.gov/pubmed/31054000; http://link.springer.com/10.1007/s11306-019-1526-1; https://dx.doi.org/10.1007/s11306-019-1526-1; https://link.springer.com/article/10.1007/s11306-019-1526-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know