Imaging tumor growth non-invasively using expression of MagA or modified ferritin subunits to augment intracellular contrast for repetitive MRI
Molecular Imaging and Biology, ISSN: 1536-1632, Vol: 16, Issue: 1, Page: 63-73
2014
- 19Citations
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes18
- 18
- CrossRef11
- Patent Family Citations1
- Patent Families1
- Captures31
- Readers31
- 31
Article Description
Purpose: The bacterial gene MagA imparts magnetic properties to mammalian cells and provides a basis for cell tracking by magnetic resonance imaging (MRI). In a mouse model of tumor growth from transplanted cells, we used repetitive MRI to demonstrate the in vivo imaging potential of MagA expression relative to a modified ferritin overexpression system, lacking regulation through iron response elements (HF + LF). Procedures: Subcutaneous tumor xenografts were monitored weekly from days 2 to 34 post-injection. Small animal MRI employed balanced steady-state free precession. Imaging was correlated with tumor histology using hematoxylin, Prussian Blue, Ki-67, and BS-1 lectin. Results: Tumor heterogeneity with respect to tissue morphology and magnetic resonance (MR) contrast was apparent within a week of cell transplantation. In MagA- and HF + LF-expressing tumors, MR contrast enhancement was recorded up to day 20 post-injection and 0.073-cm tumor volumes. MagA-expressing tumors showed increases in both quantity and quality of MR contrast as measured by fractional void volume and contrast-to-noise ratio, respectively. MR contrast in both MagA- and HF + LF-expressing tumors was maximal by day 13, doubling fractional void volume 1 week ahead of controls. Conclusions: MagA- and HF + LF-expressing tumor xenografts augment MR contrast after 1 week of growth. MagA expression increases MR contrast within days of cell transplantation and provides MR contrast comparable to HF + LF. MagA has utility for monitoring cell growth and differentiation, with potential for in vivo detection of reporter gene expression using MRI. © 2013 World Molecular Imaging Society.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84895075686&origin=inward; http://dx.doi.org/10.1007/s11307-013-0661-8; http://www.ncbi.nlm.nih.gov/pubmed/23836502; http://link.springer.com/10.1007/s11307-013-0661-8; https://dx.doi.org/10.1007/s11307-013-0661-8; https://link.springer.com/article/10.1007/s11307-013-0661-8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know