Electrolytic removal of alizarin red S by Fe/Al composite hydrogel electrode for electrocoagulation toward a new wastewater treatment
Environmental Science and Pollution Research, ISSN: 1614-7499, Vol: 23, Issue: 22, Page: 22771-22782
2016
- 22Citations
- 45Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations22
- Citation Indexes22
- 22
- CrossRef8
- Captures45
- Readers45
- 45
Article Description
This paper studies Fe/Al composite hydrogel electrode electrocoagulation (EC) and adsorption of alizarin red S (ARS). ARS removal efficiency and degradation mechanism when applying Fe/Al composite hydrogel electrode were investigated. The optimum experimental factors and degradation of ARS were discussed. ARS degradation was optimal operation at initial pH 3 with O.The experimental results showed that the COD removal efficiency was better, reaching to about 90 % when applying the novel electrode system. The discoloration rate also reached the best effect of 99 % in the superior technical conditions. The optimum electrolysis time is about 30 min. Results revealed that the efficiency in the EC process with Fe/Al composite hydrogel electrodes were much better than that in conventional electrode system. In addition, Fe/Al composite hydrogel electrodes are environment-friendly material, which reuse waste and reduce cost. Hydrogel has certain iron exchange capacity to eliminate the residual metal irons. It is found that the application of ultrasonic helps to accelerate the electrocoagulation of ARS. This study not only realizes the ultrasonic, flotation, coagulation, and adsorption of the combination but also gains economy and environment. Consequently, the unique performance of Fe/Al composite hydrogel electrodes opens promising perspectives for fast, high, and economical treatment of wastewater containing dyes or/and organic contaminants.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84983378815&origin=inward; http://dx.doi.org/10.1007/s11356-016-7483-6; http://www.ncbi.nlm.nih.gov/pubmed/27562812; http://link.springer.com/10.1007/s11356-016-7483-6; https://dx.doi.org/10.1007/s11356-016-7483-6; https://link.springer.com/article/10.1007/s11356-016-7483-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know