Ferrous-activated peroxymonosulfate oxidation of antimicrobial agent sulfaquinoxaline and structurally related compounds in aqueous solution: kinetics, products, and transformation pathways
Environmental Science and Pollution Research, ISSN: 1614-7499, Vol: 24, Issue: 24, Page: 19535-19545
2017
- 33Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations33
- Citation Indexes33
- 33
- CrossRef3
- Captures28
- Readers28
- 28
Article Description
Sulfaquinoxaline (SQX) is a coccidiostatic drug widely used in poultry and swine production and has been frequently detected in various environmental compartments such as surface water, groundwater, soils, and sediments. In the present study, degradation of SQX by ferrous ion-activated peroxymonosulfate oxidation process (Fe(II)/PMS), a promising in situ chemical oxidation (ISCO) technique, was systematically investigated. Experimental results showed that Fe(II)/PMS process appeared to be more efficient for SQX removal relative to Fe(II)/persulfate process (Fe(II)/PS). An optimal Fe(II):PMS molar ratio of 1:1 was found to be necessary for efficient removal of SQX. Increasing the solution pH hampered the degradation of SQX, and no enhancement in SQX degradation was observed when chelating agents S,S′-ethylenediamine-N,N′-disuccinic acid (EDDS) and citrate were present. The presence of Suwannee River fulvic acid (SRFA), as a representative of aquatic natural organic matter (NOM), could inhibit the degradation of SQX. SQX was more susceptible to Fe(II)/PMS oxidation in comparison to its substructural analog 2-amino-quinoxaline (2-AQ) and other sulfonamides, i.e., sulfapyridine (SPD) and sulfadiazine (SDZ). Transformation products of SQX were enriched by solid-phase extraction (SPE) and identified by liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-MS/MS). On the basis of the TPs identified, detailed reaction pathways for SQX degradation including sulfonamide bond cleavage, SO extrusion, and aniline moiety oxidation were proposed. Our contribution may provide some useful information for better understanding the kinetics and mechanisms of SQX degradation by sulfate radical-based advanced oxidation processes (SR-AOPs).
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85021837163&origin=inward; http://dx.doi.org/10.1007/s11356-017-9569-1; http://www.ncbi.nlm.nih.gov/pubmed/28681293; http://link.springer.com/10.1007/s11356-017-9569-1; https://dx.doi.org/10.1007/s11356-017-9569-1; https://link.springer.com/article/10.1007/s11356-017-9569-1
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know