Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle
Environmental Science and Pollution Research, ISSN: 1614-7499, Vol: 27, Issue: 11, Page: 12476-12490
2020
- 55Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations55
- Citation Indexes55
- 55
- CrossRef2
- Captures33
- Readers33
- 33
Article Description
We aimed to examine the effects of selenium on the tolerance of radish plants CV. Cherri Belle under cadmium phytotoxicity. The biomass accumulation was drastically decreased under Cd toxicity and the supplementary Se maintained the biomass acquisition under Cd pressure. The chlorophyll index (SPAD), PSII efficiency (Fv/Fm), and PSII quantum yield (ΦPSII) were declined in response to Cd treatment, while Se nutrition improved these variables in a dose-dependent manner. The highest HO and MDA contents were observed in the plants fed with 10 mg L Cd. The Cd stress resulted in a considerable decline in the activities of GPX, CAT, and APX antioxidant enzymes, while Se supplementation increased their activities in the Cd-treated plants. Based on the mineral analyses, no Cd was traced in the control plants, while the Cd concentration in both roots and leaves of the Cd-stressed radish plants increased with increasing the supplemented Cd levels. Compared with plants solely treated with 10 mg L Cd, Se nutrition declined the Cd absorption in roots and in leaves. The concentration of evaluated micronutrients including Fe, Mn, Cu, and Zn tended to decrease in the Cd-imposed plants in comparison with control plants. Se nutrition of both stressed and non-stressed radish plants increased the concentrations of the studied microelements, except for Zn in which the individual use of Se led to a decrease in the Zn content. Significant positive and negative correlation values were found among the studied traits and the principle component analysis (PCA) biplot and Ward dendrogram confirmed the results of the correlation analysis. Se proved to be efficient in the alleviation of Cd-triggered deleterious effects by improving biomass acquisition, enhancing chlorophyll biosynthesis and fluorescence, and increasing micronutrient uptake in a dose-dependent manner. Furthermore, the Se alleviation mechanism under Cd stress was also connected with the activation of enzymatic antioxidative protection system as well as with decreasing Cd uptake, transport, and distribution in radish leaves. Altogether, our research strongly suggests the implementation of Se in the growth medium to enhance the tolerance of radish plants under Cd stress.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85078780732&origin=inward; http://dx.doi.org/10.1007/s11356-020-07751-2; http://www.ncbi.nlm.nih.gov/pubmed/31997246; http://link.springer.com/10.1007/s11356-020-07751-2; https://dx.doi.org/10.1007/s11356-020-07751-2; https://link.springer.com/article/10.1007/s11356-020-07751-2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know