Metagenomic analysis reveals the effects of cotton straw–derived biochar on soil nitrogen transformation in drip-irrigated cotton field
Environmental Science and Pollution Research, ISSN: 1614-7499, Vol: 27, Issue: 35, Page: 43929-43941
2020
- 19Citations
- 37Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes19
- 19
- CrossRef15
- Captures37
- Readers37
- 37
Article Description
Biochar has been widely accepted as a soil amendment to improve nitrogen (N) use efficiency, but the effect of biochar on N transformation metabolic pathways is unclear. A field experiment was conducted to evaluate the effect of biochar on N transformation in drip-irrigated cotton field. Four treatments were set as (1) no N fertilization (CK), (2) N fertilizer application at 300 kg ha (N300), (3) N fertilizer application plus cotton straw (N300+ST), and (4) N fertilizer application plus cotton straw–derived biochar (N300+BC). Result showed that soil total N in N300+ST and N300+BC was 16.3% and 24.9% higher than that in N300, respectively. Compared with N300+ST, the nitrate N (NO-N) in N300+BC was significantly increased. Acidolyzable N and non-acidolyzable N in N300+ST and N300+BC were higher than those in CK and N300, while N300+BC performed better than N300+ST. Furthermore, the N fertilizer use efficiency of cotton in N300+ST and N300+BC was 15.1% and 23.2% higher than that in N300, respectively. Both N fertilizer incorporations with straw and biochar significantly altered the microbial community structures and N metabolic pathways. Genes related to denitrification and nitrate reduction in N300+ST were higher than those in N300, and N300+BC significantly increased nitrification and glutamate synthesis genes. Therefore, N fertilizer application plus cotton straw–derived biochar changed the microbial community composition, increased nitrification and glutamate synthesis enzyme genes which were beneficial to the accumulation of soil N content, and improved soil N retention capacity thus to increase N fertilizer use efficiency.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85088869915&origin=inward; http://dx.doi.org/10.1007/s11356-020-10267-4; http://www.ncbi.nlm.nih.gov/pubmed/32743698; https://link.springer.com/10.1007/s11356-020-10267-4; https://dx.doi.org/10.1007/s11356-020-10267-4; https://link.springer.com/article/10.1007/s11356-020-10267-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know