Application of biogenic iron precipitation by strain H117 for tetracycline removal: mechanism of adsorption and activation
Environmental Science and Pollution Research, ISSN: 1614-7499, Vol: 28, Issue: 4, Page: 4815-4826
2021
- 6Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
To date, biogenic metals have opened up a window for new applications in adsorption of contaminants. But there is still little attention to be paid in the removal of tetracycline (TC) by biogenic iron precipitation (BIP). In this paper, the BIP, from iron-based mixotrophic denitrification batch reactor, was estimated for its adsorption property of TC under various parameters to simulate the behavior in aquatic environment. The maximum adsorption capacity for TC was 195.336 mg g. Analyses of spectrum verified the existence of FeO and FeOOH in BIP, which was the main reason for the removal of TC. The adsorption kinetic and isotherm of TC were well fitted to Elovich and Langmuir isotherm models, respectively, indicating that the adsorption process was mainly controlled by chemical adsorption. Furthermore, we proposed a potential mechanism of adsorption: a combination of cation-π, hydrogen bonding (H-bonding), and electrostatic interaction. Additionally, the activation experiment showed that BIP could enhance the degradation of TC (more than 98.00% removal within 1.0 h) by advanced oxidation process (AOP), due to the existence of FeOOH and FeO. Considering its effectiveness in both adsorption and activation performance, BIP is highlighted as an economical and eco-friendly material for TC removal and offers a promising method to resolve sludge disposal in biological treatment of iron-rich groundwater.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85091104209&origin=inward; http://dx.doi.org/10.1007/s11356-020-10857-2; http://www.ncbi.nlm.nih.gov/pubmed/32949365; https://link.springer.com/10.1007/s11356-020-10857-2; https://dx.doi.org/10.1007/s11356-020-10857-2; https://link.springer.com/article/10.1007/s11356-020-10857-2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know