Simultaneously attenuating antibiotic resistance genes and improving the dewaterability of sewage sludge by conditioning with Fenton’s reagent: the pivotal role of sludge pre-acidification
Environmental Science and Pollution Research, ISSN: 1614-7499, Vol: 28, Issue: 11, Page: 13300-13311
2021
- 16Citations
- 19Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- Captures19
- Readers19
- 19
Article Description
Fenton conditioning processes have been recently employed to improve the dewaterability of sewage sludge. However, it remains unclear whether the conditioning with Fenton’s reagent would simultaneously attenuate antibiotic resistance genes (ARGs) in sludge and improve sludge dewaterability. It was found in the present study that sludge pre-acidification played a pivotal role in simultaneously removing ARGs and improving sludge dewaterability by conditioning with Fenton’s reagent. When the sewage sludge was pre-acidified to pH = 3.0 and was then conditioned using Fenton’s reagent, the absolute abundances of the total ARGs and the total mobile genic elements (MGEs) in conditioned sludge were reduced by 1.85–2.10 and 2.84–3.12 log units, respectively. Additionally, sludge capillary suction time (CST) and specific resistance to filtration (SRF) were drastically reduced, and the moisture content (MC) in dewatered sludge cake was reduced to only 60.61–69.95%. Such effective attenuation of ARGs and MGEs in conditioned sludge led to their removal in both the dewatered sludge cakes and dewatering filtrate. However, only the improvement of sludge dewaterability was attained by sludge conditioning with Fenton’s reagent but without sludge pre-acidification. During the conditioning treatment, the removal of loosely bound extracellular polymeric substance (EPS) and tightly bound EPS in conditioned sludge contributed to the improvement of sludge dewaterability, and the damage of sludge microbial cells was highly correlated with the attenuation of antibiotic resistance. Thus, sludge pre-acidification combined with conditioning using Fenton’s reagent can be employed to simultaneously attenuate the antibiotic resistance in sewage sludge and improve sludge dewaterability.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85095804734&origin=inward; http://dx.doi.org/10.1007/s11356-020-11562-w; http://www.ncbi.nlm.nih.gov/pubmed/33175353; http://link.springer.com/10.1007/s11356-020-11562-w; https://dx.doi.org/10.1007/s11356-020-11562-w; https://link.springer.com/article/10.1007/s11356-020-11562-w
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know