Multifunctional and smart ErO–ZnO nanocomposites for electronic ceramic varistors and visible light degradation of wastewater treatment
Environmental Science and Pollution Research, ISSN: 1614-7499, Vol: 29, Issue: 13, Page: 19109-19131
2022
- 12Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- CrossRef8
- Captures17
- Readers17
- 17
Article Description
In this proposed study, erbium (Er)-doped ZnO nanocomposites were prepared through the effective, basic, and green combustion method. The significant effects of Er dopants on the structural, morphological features, dielectric, and optical behaviors of the pure ZnO matrix as well as ErO–ZnO nanostructured materials were investigated applying X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformation infrared (FT-IR) spectroscopy, and UV–Vis spectrophotometer techniques. These results showed that the synthesized ErO–ZnO nanocomposites are well polycrystalline. The ErO–ZnO nanocomposites are almost uniformly distributed on the surface morphologies. Furthermore, UV–Vis diffuse reflectance spectroscopy, AC electrical conductivity, and dielectric properties’ current–voltage characteristics were utilized to examine the influence of erbium doping on the optical properties, energy bandgaps of the proposed ErO–ZnO nanostructured powder. The tested nano-samples were applied for the visible light photodegradation of p-chlorophenol(4-CP) and p-nitrophenol (4-NP). The Er-doped ZnO ratio affects the photocatalytic activity of the ZnO matrix. This current research substantiated that more than 99.5% of 4-CP and 4-NP were photodegraded through 30 min of irradiation. Four times, the Er:ZnO nanocatalysts were used and still displayed an efficiency of more than 96.5% for 4-CP and 4-NP degradations in the specified period of 30 min. The as-prepared ErO–ZnO nanostructures are considered novel potential candidates in broad nano-applications from visible photocatalytic degradation of waste pollutants to the electronic varistor devices. Graphical abstract: [Figure not available: see fulltext.]
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85118206861&origin=inward; http://dx.doi.org/10.1007/s11356-021-16754-6; http://www.ncbi.nlm.nih.gov/pubmed/34713401; https://link.springer.com/10.1007/s11356-021-16754-6; https://dx.doi.org/10.1007/s11356-021-16754-6; https://link.springer.com/article/10.1007/s11356-021-16754-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know