Prediction of groundwater nitrate concentration in a semiarid region using hybrid Bayesian artificial intelligence approaches
Environmental Science and Pollution Research, ISSN: 1614-7499, Vol: 29, Issue: 14, Page: 20421-20436
2022
- 17Citations
- 45Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes17
- 17
- CrossRef5
- Captures45
- Readers45
- 45
Article Description
Nitrate is a major pollutant in groundwater whose main source is municipal wastewater and agricultural activities. In the present study, Bayesian approaches such as Bayesian generalized linear model (BGLM), Bayesian regularized neural network (BRNN), Bayesian additive regression tree (BART), and Bayesian ridge regression (BRR) were used to model groundwater nitrate contamination in a semiarid region Marvdasht watershed, Fars province, Iran. Eleven groundwater (GW) nitrate conditioning factors have been taken as input parameters for predictive modeling. The results showed that the Bayesian models used in this study were all competent to model groundwater nitrate and the BART model with R = 0.83 was more efficient than the other models. The result of variable importance showed that potassium (K) has the highest importance in the models followed by rainfall, altitude, groundwater depth, and distance from the residential area. The results of the study can support the decision-making process to control and reduce the sources of nitrate pollution.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85118550599&origin=inward; http://dx.doi.org/10.1007/s11356-021-17224-9; http://www.ncbi.nlm.nih.gov/pubmed/34735705; https://link.springer.com/10.1007/s11356-021-17224-9; https://dx.doi.org/10.1007/s11356-021-17224-9; https://link.springer.com/article/10.1007/s11356-021-17224-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know