Clean energy selection for sustainable development by using entropy-based decision model with hesitant fuzzy information
Environmental Science and Pollution Research, ISSN: 1614-7499, Vol: 29, Issue: 28, Page: 42973-42990
2022
- 7Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Smart cities development is an ambitious project launched in India in 2015 with around 14 billion USD. Smart city mission program primarily aimed at reducing the carbon footprint and encouraging green and sustainable practices. Under this context, clean energy usage for demand fulfillment became the prime focus. India’s geographic location gifts the nation with diverse clean energy sources (CES). Owing to the multiple sustainable criteria that are both conflicting and correlated, there is an urge for a multi-criteria decision approach. Previously, literatures on CES selection have not been able to grab the hesitation properly and handle uncertainty effectively. Since the human mind is dynamic, hesitation is an integral part of choice making. Hesitant fuzzy set (HFS) is a generic set that captures hesitation better. Driven by these claims, in this work, a new framework for CES selection is developed. Attitude-driven entropy measure is proposed for criteria weight assessment, and a mathematical model is formulated for ranking CESs. Together, these methods constitute a decision framework that (i) considers the attitude of experts and captures hesitation during rating process and (ii) acquires partial personal choices from experts before ranking CESs. To testify the framework, a case study from a smart city within Tamil Nadu (a state in India) is explained. Sensitivity analysis reveals the robustness of the framework, and comparison with other works showcases the novel innovations of the proposal.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85123828883&origin=inward; http://dx.doi.org/10.1007/s11356-022-18673-6; http://www.ncbi.nlm.nih.gov/pubmed/35094281; https://link.springer.com/10.1007/s11356-022-18673-6; https://dx.doi.org/10.1007/s11356-022-18673-6; https://link.springer.com/article/10.1007/s11356-022-18673-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know