Experimental study on municipal solid waste incineration bottom ash as a component of alkali-activated coal gangue–based geopolymer
Environmental Science and Pollution Research, ISSN: 1614-7499, Vol: 31, Issue: 17, Page: 26153-26169
2024
- 2Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study explores the potential of municipal solid waste incineration bottom ash (MSWI BA) and coal gangue as precursors for alkali-activated cementitious materials (CG-MBA). An examination of the impact of MSWI BA content, NaOH/NaSiO ratio, liquid–solid ratio, and NaOH concentration on strength and reaction through the application of diverse analytical methodologies. Results demonstrate that CG-MBA offers significant environmental benefits compared to conventional cement. When used as a construction filling material, CG-MBA exhibits a remarkable 74.5 ~ 79.2 wt% reduction in carbon dioxide emissions and 70.6 ~ 77.0 wt% reduction in energy consumption. Additionally, CG-MBA effectively immobilizes heavy metal ions in MSWI BA, with a fixation efficiency exceeding 56.0%. These findings suggest that CG-MBA is a promising sustainable solution for waste management, offering significant environmental benefits while demonstrating effective heavy metal immobilization. This approach contributes to pollution control and promotes environmental sustainability in the construction industry.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85187919345&origin=inward; http://dx.doi.org/10.1007/s11356-024-32945-3; http://www.ncbi.nlm.nih.gov/pubmed/38492142; https://link.springer.com/10.1007/s11356-024-32945-3; https://dx.doi.org/10.1007/s11356-024-32945-3; https://link.springer.com/article/10.1007/s11356-024-32945-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know