PlumX Metrics
Embed PlumX Metrics

One year of active moss biomonitoring in the identification of PAHs in an urbanized area—prospects and implications

Environmental Science and Pollution Research, ISSN: 1614-7499, Vol: 31, Issue: 26, Page: 38416-38427
2024
  • 1
    Citations
  • 0
    Usage
  • 4
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    1
    • Citation Indexes
      1
  • Captures
    4
  • Mentions
    1
    • News Mentions
      1
      • 1

Most Recent News

University of Opole Reports Findings in Ecology, Environment and Conservation (One year of active moss biomonitoring in the identification of PAHs in an urbanized area-prospects and implications)

2024 JUN 12 (NewsRx) -- By a News Reporter-Staff News Editor at Ecology Daily News -- New research on Ecology, Environment and Conservation is the

Article Description

Classical monitoring of air pollution provides information on environmental quality but involves high costs. An alternative to this method is the use of bioindicators. The purpose of our work was to evaluate atmospheric aerosol pollution by selected polycyclic aromatic hydrocarbons conducted as part of annual active biomonitoring (“moss-bag” technique) with the use of three moss species: Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum. The gas chromatography-mass spectrometry (GC–MS) was utilized to determine certain 13 polycyclic aromatic hydrocarbons (PAHs). Three seasonal variations in PAH concentrations have been observed as a result of the study. A fire on the toilet paper plant caused an increase of five new compounds: benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), indeno(1.2.3)-cd_pyrene (IP), dibenzo(a.h)anthracene (Dah), and benzo(g.h.i)perylene (Bghi) in proximity after 8 months of exposure compared to previous months. The effect of meteorological conditions on the deposition of PAHs (mainly wind direction) in mosses was confirmed by principal component analysis (PCA). Dicranum polysetum moss accumulated on average 26.5% more PAHs than the other species, which allows considering its broader use in active biomonitoring. The “moss-bag” technique demonstrates its feasibility in assessing the source of PAH air pollution in a long-term study. It is recommended to use this biological method as a valuable tool in air quality monitoring.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know