Effects of modified biochar on water and salt distribution and water-stable macro-aggregates in saline-alkaline soil
Journal of Soils and Sediments, ISSN: 1614-7480, Vol: 21, Issue: 6, Page: 2192-2202
2021
- 70Citations
- 45Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: This study investigated the chemical and physical mechanisms associated with the movement of water and salt in saline-alkali soil amended with different types of biochar. Materials and methods: Four types of biochar were selected: ordinary laboratory-prepared biochar (BC), acidified biochar (HBC), particle size modified biochar (NBC), and composite modified biochar (HNBC). The physical and chemical properties of the biochar treatments were characterized. Vertical infiltration simulation tests were conducted to analyze the effects of modification on the adsorption and distribution of salt ions on biochar, and the soil water-stable macro-aggregates in saline-alkali soil. Results and discussion: The porous structure, specific surface area (SSA), micropore volume (VMIC), and H/C value were increased by acidification, particle size modification, and composite modification. Compared with BC, HBC and HNBC enhanced the O/C and (O+N)/C values, thereby increasing the hydrophilicity. The vertical infiltration tests showed that the depth of the soil wetting peak and cumulative infiltration were both higher than in the control (CK) after adding biochar, where HBC had the greatest water retention capacity. The modified biochar reduced the salt content and water-soluble Na content of the soil profile by increasing the soil water content and adsorbing Na. The modified biochar promoted the formation and stabilization of soil water-stable macro-aggregates. Amending soil with HBC showed the greatest reduction in salt content and increased water-stable macro-aggregation. Conclusions: HBC improved the water retention and Na adsorption capacity of biochar. This enhanced the formation of soil water-stable macro-aggregates and improved the effects of biochar on saline-alkali soil by altering soil physical and chemical properties.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know