PlumX Metrics
Embed PlumX Metrics

Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors

Science China: Physics, Mechanics and Astronomy, ISSN: 1869-1927, Vol: 62, Issue: 6
2019
  • 52
    Citations
  • 0
    Usage
  • 25
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

In this paper, we study an application of deep learning to the advanced laser interferometer gravitational wave observatory (LIGO) and advanced Virgo coincident detection of gravitational waves (GWs) from compact binary star mergers. This deep learning method is an extension of the Deep Filtering method used by George and Huerta (2017) for multi-inputs of network detectors. Simulated coincident time series data sets in advanced LIGO and advanced Virgo detectors are analyzed for estimating source luminosity distance and sky location. As a classifier, our deep neural network (DNN) can effectively recognize the presence of GW signals when the optimal signal-to-noise ratio (SNR) of network detectors ≥ 9. As a predictor, it can also effectively estimate the corresponding source space parameters, including the luminosity distance D, right ascension α, and declination δ of the compact binary star mergers. When the SNR of the network detectors is greater than 8, their relative errors are all less than 23%. Our results demonstrate that Deep Filtering can process coincident GW time series inputs and perform effective classification and multiple space parameter estimation. Furthermore, we compare the results obtained from one, two, and three network detectors; these results reveal that a larger number of network detectors results in a better source location.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know