Proteomic analysis of long-term salinity stress-responsive proteins in Thellungiella halophila leaves
Chinese Science Bulletin, ISSN: 1001-6538, Vol: 53, Issue: 22, Page: 3530-3537
2008
- 28Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Salinity is one of the most severe environmental factors that may impair crop productivity. A proteomic study based on two-dimensional gel electrophoresis is performed in order to analyze the long-term salinity stress response of Thellungiella halophila, an Arabidopsis-related halophyte. Four-week-old seedlings are exposed to long-term salinity treatment. The total crude proteins are extracted from leaf blades, separated by 2-DE, stained with Coomassie Brilliant Blue, and differentially displayed spots are identified by MALDI-TOF MS or QTOF MS/MS. Among 900 protein spots reproducibly detected on each gel, 30 spots exhibit significant change and some of them are identified. The identified proteins include not only some previously characterized stress-responsive proteins such as TIR-NBS-LRR class disease resistance protein, ferritin-1, and pathogenesis-related protein 5, but also some proteins related to energy pathway, metabolism, RNA processing and protein degradation, as well as proteins with unknown functions. The possible functions of these proteins in salinity tolerance of T. halophila are discussed and it is suggested that the long-term salinity tolerance of T. halophila is achieved, at least partly, by enhancing defense system, adjusting energy and metabolic pathway and maintaining RNA structure. © 2008 Science in China Press and Springer-Verlag GmbH.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=56349109991&origin=inward; http://dx.doi.org/10.1007/s11434-008-0455-6; http://link.springer.com/10.1007/s11434-008-0455-6; http://link.springer.com/content/pdf/10.1007/s11434-008-0455-6; https://dx.doi.org/10.1007/s11434-008-0455-6; https://link.springer.com/article/10.1007/s11434-008-0455-6
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know