Back-calculation of soil parameters from displacement-controlled cavity expansion under geostatic stress by FEM and machine learning
Acta Geotechnica, ISSN: 1861-1133, Vol: 18, Issue: 4, Page: 1755-1768
2023
- 9Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Estimating soil properties from the mechanical reaction to a displacement is a common strategy, used not only in in situ soil characterization (e.g., pressuremeter and dilatometer tests) but also by biological organisms (e.g., roots, earthworms, razor clams), which sense stresses to explore the subsurface. Still, the absence of analytical solutions to predict the stress and deformation fields around cavities subject to geostatic stress, has prevented the development of characterization methods that resemble the strategies adopted by nature. We use the finite element method (FEM) to model the displacement-controlled expansion of cavities under a wide range of stress conditions and soil properties. The radial stress distribution at the cavity wall during expansion is extracted. Then, methods are proposed to prepare, transform and use such stress distributions to back-calculate the far field stresses and the mechanical parameters of the material around the cavity (Mohr-Coulomb friction angle ϕ, Young’s modulus E). Results show that: (i) The initial stress distribution around the cavity can be fitted to a sum of cosines to estimate the far field stresses; (ii) By encoding the stress distribution as intensity images, in addition to certain scalar parameters, convolutional neural networks can consistently and accurately back-calculate the friction angle and Young’s modulus of the soil.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know