Generating index of finite-dimensional Lie algebras
Frontiers of Mathematics in China, ISSN: 1673-3452, Vol: 6, Issue: 4, Page: 659-670
2011
- 1Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The notion of generating index of Lie algebras is introduced. We characterize some Lie algebras with full generating index and classify the Lie algebras with generating index 2 and 3. As a corollary, we give a characterization of 2-step nilpotent Lie algebras. © 2011 Higher Education Press and Springer-Verlag Berlin Heidelberg.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79960154746&origin=inward; http://dx.doi.org/10.1007/s11464-011-0106-0; http://link.springer.com/10.1007/s11464-011-0106-0; http://link.springer.com/content/pdf/10.1007/s11464-011-0106-0; http://link.springer.com/content/pdf/10.1007/s11464-011-0106-0.pdf; http://link.springer.com/article/10.1007/s11464-011-0106-0/fulltext.html; http://www.springerlink.com/index/10.1007/s11464-011-0106-0; http://www.springerlink.com/index/pdf/10.1007/s11464-011-0106-0; https://dx.doi.org/10.1007/s11464-011-0106-0; https://link.springer.com/article/10.1007/s11464-011-0106-0; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=4274456&internal_id=4274456&from=elsevier
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know