Insulin inhibits the JNK mediated cell death via upregulation of AKT expression in Schwann cells grown in hyperglycemia
Frontiers in Biology, ISSN: 1674-7992, Vol: 13, Issue: 2, Page: 137-144
2018
- 1Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Background: Schwann cells (SCs) are the glial cells of the peripheral nervous system, which forms a thick insulating structure around the axons. Hyperglycemia is known physiologic conditions in both type I and type II diabetes which causes diabetic neuropathy. But the SC possesses insulin receptors even though glucose uptake is independent of insulin. Since the insulin level is highly altered in diabetes, it is of greater importance to evaluate their role in the Schwann cell survival and death. Methods: Schwann cells were isolated from neonatal pups and grown with and without insulin in hyperglycemic medium to mimic diabetic condition for 24 and 48 h. We studied the cell viability using 3 (4,5-dimethylthiazol-2-yl) 2,5- diphenyltetrazolium bromide (MTT) and mitochondrial membrane potential (MMP) assay at different time interval on SCs. We also studied the protein and gene expression of Protein Kinase B (AKT) and Jun N-terminal kinase (JNK), which are greatly involved in cell survival and cell death respectively. Results: The result shows that, high glucose levels for 48 h decrease the SC viability. Hyperglycemic condition induces the SC death by increasing the JNK expression which in turn reduces the MMP of glial cells. However, insulin administration for SCs grown in high glucose condition can reduce the JNK expression by activating AKT signaling pathway. Conclusion: These observations demonstrate that the proper insulin balance is required for Schwann cells survival in hyperglycemic condition. Therefore, altered insulin signaling can be one of the reasons for demyelination of peripheral neurons in diabetic neuropathy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85046702239&origin=inward; http://dx.doi.org/10.1007/s11515-018-1492-4; http://link.springer.com/10.1007/s11515-018-1492-4; http://link.springer.com/content/pdf/10.1007/s11515-018-1492-4.pdf; http://link.springer.com/article/10.1007/s11515-018-1492-4/fulltext.html; https://dx.doi.org/10.1007/s11515-018-1492-4; https://link.springer.com/article/10.1007/s11515-018-1492-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know