Inverse finite-element modeling for tissue parameter identification using a rolling indentation probe
Medical and Biological Engineering and Computing, ISSN: 0140-0118, Vol: 52, Issue: 1, Page: 17-28
2014
- 18Citations
- 48Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations18
- Citation Indexes18
- 18
- CrossRef14
- Captures48
- Readers48
- 48
Article Description
This paper investigates the use of inverse finite-element modeling (IFEM)-based methods for tissue parameter identification using a rolling indentation probe for surgical palpation. An IFEM-based algorithm is proposed for tissue parameter identification through uniaxial indentation. IFEM-based algorithms are also created for locating and identifying the properties of an embedded tumor through rolling indentation of the soft tissue. Two types of parameter identification for the tissue tumor are investigated (1) identifying the stiffness (μ) of a tumor at a known depth and (2) estimating the depth of the tumor (D) with known mechanical properties. The efficiency of proposed methods has been evaluated through silicone and porcine kidney experiments for both uniaxial indentation and rolling indentation. The results show that both of the proposed IFEM methods for uniaxial indentation and rolling indentation have good robustness and can rapidly converge to the correct results. The tissue properties estimated using the developed method are generic and in good agreement with results obtained from standard material tests. The estimation error of μ through uniaxial indentation is below 3 % for both silicone and kidney; the estimation error of μ for the tumor through rolling indentation is 7-9 %. The estimation error of D through rolling indentation is 1-2 mm. © 2013 International Federation for Medical and Biological Engineering.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84896724200&origin=inward; http://dx.doi.org/10.1007/s11517-013-1118-6; http://www.ncbi.nlm.nih.gov/pubmed/24037385; http://link.springer.com/10.1007/s11517-013-1118-6; https://dx.doi.org/10.1007/s11517-013-1118-6; https://link.springer.com/article/10.1007/s11517-013-1118-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know