Frequency-specific network effective connectivity: ERP analysis of recognition memory process by directed connectivity estimators
Medical and Biological Engineering and Computing, ISSN: 1741-0444, Vol: 59, Issue: 3, Page: 575-588
2021
- 4Citations
- 22Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Human memory retrieval is one of the brain’s most important, and least understood cognitive mechanisms. Traditionally, research on this aspect of memory has focused on the contributions of particular brain regions to recognition responses, but the interaction between regions may be of even greater importance to a full understanding. In this study, we examined patterns of network connectivity during retrieval in a recognition memory task. We estimated connectivity between brain regions from electroencephalographic signals recorded from twenty healthy subjects. A multivariate autoregressive model (MVAR) was used to determine the Granger causality to estimate the effective connectivity in the time-frequency domain. We used GPDC and dDTF methods because they have almost resolved the previous volume conduction and bivariate problems faced by previous estimation methods. Results show enhanced global connectivity in the theta and gamma bands on target trials relative to lure trials. Connectivity within and between the brain’s hemispheres may be related to correct rejection. The left frontal signature appears to have a crucial role in recollection. Theta- and gamma-specific connectivity patterns between temporal, parietal, and frontal cortex may disclose the retrieval mechanism. Old/new comparison resulted in different patterns of network connection. These results and other evidence emphasize the role of frequency-specific causal network interactions in the memory retrieval process.[Figure not available: see fulltext.].
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85100795687&origin=inward; http://dx.doi.org/10.1007/s11517-020-02304-8; http://www.ncbi.nlm.nih.gov/pubmed/33559863; https://link.springer.com/10.1007/s11517-020-02304-8; https://dx.doi.org/10.1007/s11517-020-02304-8; https://link.springer.com/article/10.1007/s11517-020-02304-8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know