Innovative Poincare’s plot asymmetry descriptors for EEG emotion recognition
Cognitive Neurodynamics, ISSN: 1871-4099, Vol: 16, Issue: 3, Page: 545-559
2022
- 10Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef1
- Captures17
- Readers17
- 17
Article Description
Given the importance of emotion recognition in both medical and non-medical applications, designing an automatic system has captured the attention of several scholars. Currently, EEG-based emotion recognition has a special position, which has not fulfilled the desired accuracy rates yet. This experiment intended to provide novel EEG asymmetry measures to improve emotion recognition rates. Four emotional states have been classified using the k-nearest neighbor (kNN), support vector machine, and Naïve Bayes. Feature selection has been performed, and the role of employing a different number of top-ranked features on emotion recognition rates has been assessed. To validate the efficiency of the proposed scheme, two public databases, including the SJTU Emotion EEG Dataset-IV (SEED-IV) and a Database for Emotion Analysis using Physiological signals (DEAP) were evaluated. The experimental results indicated that kNN outperformed the other classifiers with a maximum accuracy of 95.49 and 98.63% using SEED-IV and DEAP datasets, respectively. In conclusion, the results of the proposed novel EEG-asymmetry measures make the framework a superior one compared to the state-of-art EEG emotion recognition approaches.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85118154935&origin=inward; http://dx.doi.org/10.1007/s11571-021-09735-5; http://www.ncbi.nlm.nih.gov/pubmed/35603058; https://link.springer.com/10.1007/s11571-021-09735-5; https://dx.doi.org/10.1007/s11571-021-09735-5; https://link.springer.com/article/10.1007/s11571-021-09735-5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know