Advanced nickel-based composite materials for supercapacitor electrodes
Ionics, ISSN: 1862-0760, Vol: 30, Issue: 4, Page: 1833-1855
2024
- 24Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
In the contemporary era of technological advancement, the escalating energy consumption paralleling enhanced living standards necessitates sustainable and eco-friendly energy solutions. Supercapacitors (SCs), lauded for their high capacitance and minimal environmental impact, have emerged as a focal point in this pursuit. Central to SCs’ efficacy are the electrode materials, with nickel-based compounds gaining prominence due to their high theoretical capacitance, affordability, ecological compatibility, ease of synthesis, and chemical stability. Despite these merits, challenges such as inadequate rate capability and cycling property impede their broader applications. This review summarizes the latest advancements in nickel-based composite materials for SC electrodes. It comprehensively discusses their characteristics, fabrication techniques, morphological attributes, and strategies for performance enhancement. The review also analytically explores the diverse electrochemical properties of SCs, offering insights into the underlying causes. Concluding with a discussion on prevailing challenges and potential resolutions, it anticipates future directions in nickel-based supercapacitor electrode material development.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know