Worst-case evaluation complexity of a derivative-free quadratic regularization method
Optimization Letters, ISSN: 1862-4480, Vol: 18, Issue: 1, Page: 195-213
2024
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
This manuscript presents a derivative-free quadratic regularization method for unconstrained minimization of a smooth function with Lipschitz continuous gradient. At each iteration, trial points are computed by minimizing a quadratic regularization of a local model of the objective function. The models are based on forward finite-difference gradient approximations. By using a suitable acceptance condition for the trial points, the accuracy of the gradient approximations is dynamically adjusted as a function of the regularization parameter used to control the stepsizes. Worst-case evaluation complexity bounds are established for the new method. Specifically, for nonconvex problems, it is shown that the proposed method needs at most O(nϵ) function evaluations to generate an ϵ-approximate stationary point, where n is the problem dimension. For convex problems, an evaluation complexity bound of O(nϵ) is obtained, which is reduced to O(nlog (ϵ)) under strong convexity. Numerical results illustrating the performance of the proposed method are also reported.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know