Seismic anisotropy of a fractured rock during CO injection: a feasibility study
Acta Geophysica, ISSN: 1895-7455, Vol: 67, Issue: 1, Page: 141-148
2019
- 8Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fluid substitution plays the key role in reservoir characterization, leading to enhance understanding of the influence of fluids on seismic parameters. In general, fluid substitution tool assumes that the Earth is as an isotropic medium, which may not represent the practical field situation. Nevertheless, anisotropic fluid substitution provides important insights into the processes that control the anisotropic seismic response of a fractured rock when subjected to CO injection for enhanced oil recovery and its geological sequestration. Here, we examine the influence of fluid substitution in a porous yet fractured reservoir for quantitative interpretation of seismic data. This investigation involves anisotropic Gassmann’s equation and linear slip theory for fluid substitution in a transversely isotropic media with a horizontal axis of symmetry (HTI). We present a synthetic case by conceptualizing a double-layered half-space model with upper layer as shale and bottom layer as HTI sandstone, representing an Indian mature reservoir. The effects of variation in background porosity and fracture weaknesses on anisotropic (Thomsen’s) parameters, acoustic parameters including amplitude variation with angle have also been discussed. We observe that brine and oil sands to be associated with the highest elastic moduli, while CO sands exhibit contrasting trend. It is noteworthy that CO is more sensitive to fracture weakness when compared to the other reservoir fluids such as hydrocarbons and brines, as P-wave moduli (as much as 37.1%) and velocity (as high as 12.2%) reduces significantly with the increase in fracture weakness. Further, Gassmann’s assumption is validated as we noticed unchanged values in shear-wave moduli and shear-wave splitting parameter (γ) for various fluid types.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85060993749&origin=inward; http://dx.doi.org/10.1007/s11600-019-00246-w; http://link.springer.com/10.1007/s11600-019-00246-w; http://link.springer.com/content/pdf/10.1007/s11600-019-00246-w.pdf; http://link.springer.com/article/10.1007/s11600-019-00246-w/fulltext.html; https://dx.doi.org/10.1007/s11600-019-00246-w; https://link.springer.com/article/10.1007/s11600-019-00246-w
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know