PlumX Metrics
Embed PlumX Metrics

Modeling and Simulation of Lithium Vacuum Evaporation Process Using COMSOL Multiphysics

Journal of Thermal Science, ISSN: 1993-033X, Vol: 33, Issue: 1, Page: 86-100
2024
  • 4
    Citations
  • 0
    Usage
  • 5
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Based on the COMSOL Multiphysics simulation software, this study carried out modeling and numerical simulation for the evaporation process of liquid metal lithium in the vacuum free molecular flow state. The motion of lithium atoms in the evaporation process was analyzed through a succession of studies. Based on the available experimental values of the saturated vapor pressure of liquid metal lithium, the relationship between saturated vapor pressure and temperature of liquid lithium in the range of 600 K–900 K was obtained. A two-dimensional symmetric model (3.5 mm×20 mm) was established to simulate the transient evaporation process of liquid lithium at wall temperatures of 750 K, 780 K, 800 K, 810 K, 825 K, and 850 K, respectively. The effects of temperature, the evaporation coefficient, back pressure, and length-to-diameter ratio on the evaporation process were studied; the variation trends and reasons of the molecular flux and the pressure during the evaporation process were analyzed. At the same time, the evaporation process under variable wall temperature conditions was simulated. This research made the evaporation process of liquid lithium in vacuum molecular flow clearer, and provided theoretical support for the space reactor and nuclear fusion related fields.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know