PlumX Metrics
Embed PlumX Metrics

Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, ISSN: 1073-5623, Vol: 44, Issue: 1, Page: 440-455
2013
  • 98
    Citations
  • 0
    Usage
  • 36
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    98
    • Citation Indexes
      98
  • Captures
    36

Article Description

HSLA-100 steel with high content of alloying elements (nominally in wt pct, 3.5 Ni, 1.6 Cu, and 0.6Mo) is now used to produce heavy plates for constructing a hull and drilling platform. We proposed here a substantially leaner steel composition (containing 1.7 Ni, 1.1 Cu, and 0.5Mo) to produce a heavy plate to 80 mm thickness with mechanical properties comparable with those of the HSLA-100 grade. A continuous cooling transformation (CCT) diagram of the steel was constructed. Key parameters of thermal treatment and revealing mechanisms of strengthening and toughening were derived based on industrial production trials. The microstructures of the 80-mm-thick plate were lath-like bainite (LB) at near surface of the quarter thickness (t/4), and granular bainite (GB)+LB at center thickness (t/2) after solutionizing and water quenching (Q). The effect of tempering (T) on the microstructures and properties of the plate was investigated. Excellent combination of room temperature strength and low-temperature Charpy V-notch (CVN) toughness approximately equivalent to that of the HSLA 100 grade (YS > 690 MPa, CVN energy >100 J even at 193 K [-80 C]) was achieved in the plate treated by the QT process with tempering temperature of 898 K (625 C). The combination of strength and toughness at t/4 is superior to that at t/2 of the plate under both as-quenched and QT conditions. This result is attributed to that the fraction of high-angle grain boundaries (HAGBs) at t/4 is higher than that at t/2. © 2012 The Minerals, Metals & Materials Society and ASM International.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know