PlumX Metrics
Embed PlumX Metrics

Breakdown Trade-Off Relation of Mechanical Properties via Micro-alloying in Mg–Mn Alloys

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, ISSN: 1073-5623, Vol: 53, Issue: 3, Page: 1110-1118
2022
  • 1
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The impact of micro-alloying on tensile behavior at strain rates in various ranges is examined using five types of extruded Mg-0.3 at. pct Mn–0.1 at. pct X ternary alloys, where X is selected as a common element, Al, Li, Sn, Y or Zn. Microstructural observations reveal that the average grain size of these extruded alloys is between 1 and 3 μm, and these micro-alloying elements segregate at grain boundaries. In room temperature tensile and compression tests, these results show that the mechanical properties and deformation behavior are influenced by the micro-alloying element, even as a small addition of 0.1 at. pct. Mg–Mn–Y and Mg–Mn-Zn alloys show higher strength and smaller strain rate sensitivity (m-value) among the present alloys, owing to the rate-controlling mechanism as dislocation slip. On the other hand, the Mg–Mn–Li alloy exhibits the largest elongation to failure in tension and the highest strain rate sensitivity, associated with high contribution of grain boundary sliding to deformation. These differences are due to the grain boundary segregation of the micro-alloying elements. Compared to the common Mg alloys, the present ternary alloys also show a trade-off relationship between strength and ductility, which is similar to that of the well-known Mg alloys; however, these properties of the Mg–Mn system ternary alloys could be controlled via the type of micro-alloying elements with a chemical content of 0.1 at. pct.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know