Prediction of Behavior of Alumina Inclusion in Front of Solid–Liquid Interface in SPFH590 Steel
Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, ISSN: 1073-5615, Vol: 51, Issue: 2, Page: 690-696
2020
- 10Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
To predict the behavior of an alumina inclusion in front of the solid–liquid interface during solidification, the interfacial tension between SPFH590 micro-alloyed steel and alumina was experimentally determined. The surface tension of the micro-alloyed steel was measured by the constrained drop method, and the contact angle between the micro-alloyed steel and alumina was investigated by the sessile drop method. Temperature was controlled within the range of 1823 K to 1873 K, and the sulfur concentration in the steel was set in the range of 11 to 94 ppm. With increasing temperature, the surface tensions of steel samples decreased. Further, with increasing temperature, the contact angles of the samples containing 11 to 72 ppm sulfur decreased whereas that of the sample containing 94 ppm sulfur increased. The experimental data were then used to calculate the interfacial tension between the micro-alloyed steel and alumina according to Young’s equation. With increasing temperature, the interfacial tensions of the samples containing 11 to 72 ppm sulfur decreased whereas that of the sample containing 94 ppm sulfur increased. The behavior of an alumina inclusion in front of the solid–liquid interface in the SPFH590 steel was predicted using the calculated interfacial tension values. It was estimated that an increase in the sulfur concentration from 5 to 10 ppm caused a transition of the inclusion from being in an entrapped state to being pushed away from solid–liquid interface.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know