Current Progress in Solid-State Electrolytes for Dye-Sensitized Solar Cells: A Mini-Review
Journal of Electronic Materials, ISSN: 1543-186X, Vol: 49, Issue: 12, Page: 7085-7097
2020
- 27Citations
- 56Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Low-cost and high-performance dye-sensitized solar cells (DSSCs) are considered promising candidates for commercial application. As one of the crucial components, electrolytes are considered the limiting factor for long-term DSSC stability. As alternative materials, solid-state electrolytes have been used in DSSCs, which may solve the problem of liquid electrolytes, such as leakage and volatilization. In this review, we define solid-state electrolytes as inorganic hole transport materials (HTMs), organic HTMs, ionic conductive polymer electrolytes, and ionic liquid polymer electrolytes according to the different types of carriers and summarize the latest development trends of these electrolytes. We discuss in detail the mechanism of solid-state dye-sensitized solar cells (ssDSSCs), including the hole transfer process at the dye/hole-conductor interface and factors that reduce the efficiency of ssDSSCs, and summarize several methods to improve the efficiency and long-term stability of ssDSSCs. These may facilitate the research and development of electrolytes for ssDSSCs.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know