A Review on Micro- and Nanoscratching/Tribology at High Temperatures: Instrumentation and Experimentation
Journal of Materials Engineering and Performance, ISSN: 1544-1024, Vol: 27, Issue: 8, Page: 3844-3858
2018
- 23Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
High-temperature micro-/nanomechanics has attracted much interest over the last decade, primarily because of the urgent need to understand the mechanical and tribological properties of advanced engineering materials at micro-/nanoscale and the underlying physics controlling such properties at operationally relevant conditions. Recent years have subsequently witnessed the swift growth and development of new high-temperature micro- and nanoscratching/tribology instruments. Here, we present an overview of fundamental principles and developments in these instruments, discuss pertinent findings on the topic in detail, and outline current challenges and promising future directions in the field.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know