Deep Transfer Learning for Bearing Fault Diagnosis using CWT Time–Frequency Images and Convolutional Neural Networks
Journal of Failure Analysis and Prevention, ISSN: 1864-1245, Vol: 23, Issue: 3, Page: 1046-1058
2023
- 14Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Deep transfer learning has evolved into a powerful method for defect identification, particularly in mechanical systems that lack sufficient training data. Nonetheless, domain divergence and absence of overlap between the source and target domains might result in negative transfer. This study examines the partial knowledge transfer, for bearing fault diagnosis, by freezing layers in varying proportions to take advantage of both freezing and fine-tuning strategies. To assess the proposed strategy, three distinct pre-trained models are used, namely ResNet-50, GoogLeNet, and SqueezeNet. Each network is trained using three different optimizers: root mean square propagation, adaptive moment estimation, and stochastic gradient descent with momentum. The suggested technique performance is evaluated in terms of fault classification accuracy, specificity, precision, and training time. The classification results obtained using the CWRU datasets show that the proposed technique reduces training time while enhancing diagnostic accuracy, hence improving bearing defect diagnosis performance.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know