Box–Behnken design to optimize Ni(II) adsorption using coffee husk-derived biochar compositing with MnFeO
Chemical Papers, ISSN: 1336-9075, Vol: 77, Issue: 10, Page: 5773-5786
2023
- 3Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The main objective of this research was to optimize Ni(II) adsorption using coffee husk-derived biochar composited with MnFeO nanoparticles (MFO@BC). The MnFeO nanoparticles (MnFeO–NPs) were synthesized by the co-precipitate method. Then, the MFO@BC nanocomposite was formed simultaneously through co-precipitation and hydrothermal processes. Box–Behnken experimental design in response surface methodology (Design Expert 11, Stat-Ease, USA) was used to carry the Ni(II) adsorption optimization onto MFO@BC. The effects of initial Ni(II) concentration, solution pH, contact time, and adsorption material mass were chosen as independent variables for Ni(II) adsorption processes on MFO@BC. The results indicated that the loaded mass ratio of 2.5 MnFeO–NPs (w/w) on the coffee husk-derived biochar was the most suitable for Ni(II) adsorption onto MFO@BC. The result of ANOVA analysis, where p values of 0.0005 were significant for the quadratic polynomial model. In addition, the proposed model was fitted with the actual values with the high R and R–adjusted (R) values of 0.8867 and 0.7647, respectively. Three factors, including initial Ni(II) concentration, solution pH and adsorbent mass, had the main effect on Ni(II) adsorption capacity by MFO@BC. Optimum conditions for Ni(II) adsorption onto MFO@BC were obtained at solution pH 7, 50 min of contact time, initial Ni(II) concentration of 4.0 mg/L and 0.025 g adsorbent/25 mL. Under these conditions, the maximum adsorption capacity of Ni(II) onto MFO@BC reached 5.51 mg/g. Five cycles of adsorption–desorption did not substantially decrease the adsorption capacities of MFO@BC.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know