Preparation of gallic acid-containing PCL/gelatine scaffolds as an efficient drug delivery system for growth and proliferation of human stem cells
Chemical Papers, ISSN: 1336-9075, Vol: 78, Issue: 4, Page: 2589-2602
2024
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
Tissue engineering and regenerative medicine play a prominent role in the growth and proliferation of stem cells. Fabricating scaffold-based drug delivery systems (DDS) has opened a new gate for having efficient DDS and a platform for cell growth. The electrospun poly ε-caprolactone-gelatin (PCL-Gel or PG) nanofibers loaded with various concentrations of gallic acid (GA) (1% w/w (PGG1), 3% w/w (PGG3), 5%w/w (PGG5), 10% w/w (PGG10), and 20% w/w (PGG20)) were efficiently fabricated as efficient scaffolds for inducing the growth and proliferation of hWJ-MSCs. FT-IR, XRD, FE-SEM, tensile test, and water contact angle (WCA) were applied to study the scaffolds. The FT-IR and XRD techniques effectively confirmed the appropriate structure of scaffolds, and FE-SEM demonstrated the fabrication of nanofibrous scaffolds with average diameter ranges of 220.73 nm, 206 nm, 211.35 nm, 213.15 nm, 241.61 nm, and 298.94 nm for PG, PGG1, PGG3, PGG5, PGG10, and PGG20 scaffolds, respectively. Based on the results, PGG5 was shown to have appropriate mechanical property, average diameter, smooth morphology, better hydrophilicity, and favorable encapsulation efficiency. The controlled bioactive release (about 40% within a day) was measured for PGG5 using UV–Vis spectrophotometry. Next, the MTT test exhibited approximately 120.58% (after three days), 147.26% (after five days), and 153.77% (after seven days) of cell viabilities after treatment with GA150 (~ PGG5), while it was 218.02%, 219.31%, and PGG5 at the same conditions, respectively.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know