Smartphone-based pH titration for liquid food applications
Chemical Papers, ISSN: 1336-9075, Vol: 78, Issue: 16, Page: 8849-8862
2024
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures15
- Readers15
- 15
Article Description
The pH detection helps control food quality, prevent spoilage, determine storage methods, and monitor additive levels. In the previous studies, colorimetric pH detection involved manual capture of target regions and classification of acid–base categories, leading to time-consuming processes. Additionally, some researchers relied solely on R*G*B* or H*S*V* to build regression models, potentially limiting their generalizability and robustness. To address the limitations, this study proposed a colorimetric method that combines pH paper, smartphone, computer vision, and machine learning for fast and precise pH detection. Advantages of the computer vision model YOLOv5 include its ability to quickly capture the target region of the pH paper and automatically categorize it as either acidic or basic. Subsequently, recursive feature elimination was applied to filter out irrelevant features from the R*G*B*, H*S*V*, L*a*b*, Gray, X, X, and X. Finally, the support vector regression was used to develop the regression model for pH value prediction. YOLOv5 demonstrated exceptional performance with mean average precision of 0.995, classification accuracy of 100%, and detection time of 4.9 ms. The pH prediction model achieved a mean absolute error (MAE) of 0.023 for acidity and 0.061 for alkalinity, signifying a notable advancement compared to the MAE range of 0.03–0.46 observed in the previous studies. The proposed approach shows potential in improving the dependability and effectiveness of pH detection, specifically in resource-constrained scenarios. Graphical abstract: (Figure presented.).
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know