PlumX Metrics
Embed PlumX Metrics

Gas marbles: ultra-long-lasting and ultra-robust bubbles formed by particle stabilization

Frontiers of Chemical Science and Engineering, ISSN: 2095-0187, Vol: 16, Issue: 11, Page: 1681-1687
2022
  • 0
    Citations
  • 0
    Usage
  • 1
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Bubbles and foams are ubiquitous in daily life and industrial processes. Studying their dynamic behaviors is of key importance for foam manufacturing processes in food packaging, cosmetics and pharmaceuticals. Bare bubbles are inherently fragile and transient; enhancing their robustness and shelf lives is an ongoing challenge. Their rupture can be attributed to liquid evaporation, thin film drainage and the nuclei of environmental dust. Inspired by particle-stabilized interfaces in Pickering emulsions, armored bubbles and liquid marble, bubbles are protected by an enclosed particle-entrapping liquid thin film, and the resultant soft object is termed gas marble. The gas marble exhibits mechanical strength orders of magnitude higher than that of soap bubbles when subjected to overpressure and underpressure, owing to the compact particle monolayer straddling the surface liquid film. By using a water-absorbent glycerol solution, the resulting gas marble can persist for 465 d in normal atmospheric settings. This particle-stabilizing approach not only has practical implications for foam manufacturing processes but also can inspire the new design and fabrication of functional biomaterials and biomedicines. [Figure not available: see fulltext.]

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know