Fib-4 score is able to predict intra-hospital mortality in 4 different SARS-COV2 waves
Internal and Emergency Medicine, ISSN: 1970-9366, Vol: 18, Issue: 5, Page: 1415-1427
2023
- 3Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- Captures17
- Readers17
- 17
Article Description
Increased values of the FIB-4 index appear to be associated with poor clinical outcomes in COVID-19 patients. This study aimed to develop and validate predictive mortality models, using data upon admission of hospitalized patients in four COVID-19 waves between March 2020 and January 2022. A single-center cohort study was performed on consecutive adult patients with Covid-19 admitted at the Fondazione Policlinico Gemelli IRCCS (Rome, Italy). Artificial intelligence and big data processing were used to retrieve data. Patients and clinical characteristics of patients with available FIB-4 data derived from the Gemelli Generator Real World Data (G2 RWD) were used to develop predictive mortality models during the four waves of the COVID-19 pandemic. A logistic regression model was applied to the training and test set (75%:25%). The model's performance was assessed by receiver operating characteristic (ROC) curves. A total of 4936 patients were included. Hypertension (38.4%), cancer (12.15%) and diabetes (16.3%) were the most common comorbidities. 23.9% of patients were admitted to ICU, and 12.6% had mechanical ventilation. During the study period, 762 patients (15.4%) died. We developed a multivariable logistic regression model on patient data from all waves, which showed that the FIB-4 score > 2.53 was associated with increased mortality risk (OR = 4.53, 95% CI 2.83–7.25; p ≤ 0.001). These data may be useful in the risk stratification at the admission of hospitalized patients with COVID-19.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85165875618&origin=inward; http://dx.doi.org/10.1007/s11739-023-03310-y; http://www.ncbi.nlm.nih.gov/pubmed/37491564; https://link.springer.com/10.1007/s11739-023-03310-y; https://dx.doi.org/10.1007/s11739-023-03310-y; https://link.springer.com/article/10.1007/s11739-023-03310-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know