Multi-scale feature flow alignment fusion with Transformer for the microscopic images segmentation of activated sludge
Signal, Image and Video Processing, ISSN: 1863-1711, Vol: 18, Issue: 2, Page: 1241-1248
2024
- 1Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Accurate microscopic images segmentation of activated sludge is essential for monitoring wastewater treatment processes. However, it is a challenging task due to poor contrast, artifacts, morphological similarities, and distribution imbalance. A novel image segmentation model (FafFormer) was developed in the work based on Transformer that incorporated pyramid pooling and flow alignment fusion. Pyramid Pooling Module was used to extract multi-scale features of flocs and filamentous bacteria with different morphology in the encoder. Multi-scale features were fused by flow alignment fusion module in the decoder. The module used generated semantic flow as auxiliary information to restore boundary details and facilitate fine-grained upsampling. The Focal–Lovász Loss was designed to handle class imbalance for filamentous bacteria and flocs. Image-segmentation experiments were conducted on an activated sludge dataset from a municipal wastewater treatment plant. FafFormer showed relative superiority in accuracy and reliability, especially for filamentous bacteria compared to existing models.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know