PlumX Metrics
Embed PlumX Metrics

Multi-scale feature flow alignment fusion with Transformer for the microscopic images segmentation of activated sludge

Signal, Image and Video Processing, ISSN: 1863-1711, Vol: 18, Issue: 2, Page: 1241-1248
2024
  • 1
    Citations
  • 0
    Usage
  • 5
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Accurate microscopic images segmentation of activated sludge is essential for monitoring wastewater treatment processes. However, it is a challenging task due to poor contrast, artifacts, morphological similarities, and distribution imbalance. A novel image segmentation model (FafFormer) was developed in the work based on Transformer that incorporated pyramid pooling and flow alignment fusion. Pyramid Pooling Module was used to extract multi-scale features of flocs and filamentous bacteria with different morphology in the encoder. Multi-scale features were fused by flow alignment fusion module in the decoder. The module used generated semantic flow as auxiliary information to restore boundary details and facilitate fine-grained upsampling. The Focal–Lovász Loss was designed to handle class imbalance for filamentous bacteria and flocs. Image-segmentation experiments were conducted on an activated sludge dataset from a municipal wastewater treatment plant. FafFormer showed relative superiority in accuracy and reliability, especially for filamentous bacteria compared to existing models.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know