Abatement of Cr(VI) and As(III) by MnO loaded MCM-41 in wastewater treatment
Korean Journal of Chemical Engineering, ISSN: 1975-7220, Vol: 32, Issue: 8, Page: 1667-1677
2015
- 8Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Manganese dioxide (MnO) loaded MCM-41 (MnO/MCM-41) was used as adsorbent to remove Cr(VI) and As(III) from aqueous solution. The adsorbent was synthesized and characterized. Effect of pH on the removal of Cr(VI) and As(III) was investigated. The desired pH of aqueous solution was 2 for the removal of Cr(VI) and 4 for the removal of As(III). Besides, the adsorption of As(III) and Cr(VI) can be well described by Langmuir and Freundlich isotherm models, respectively. The kinetic data can be successfully depicted by pseudo-second-order model. Moreover, external and intra-particle diffusion were found to be rate-controlling steps of the adsorption process. Thermodynamic analysis suggested that the adsorption process was spontaneous and endothermic. In a binary system, the presence of Cr(VI) and As(III) slightly reduced the removal efficiency of each other. The desorption study showed 0.1mol/L NaOH liquor held good desorption ability for metal loaded MnO/MCM-41.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know