Biotechnological application of plant growth-promoting endophytic bacteria isolated from halophytic plants to ameliorate salinity tolerance of Vicia faba L.
Plant Biotechnology Reports, ISSN: 1863-5474, Vol: 15, Issue: 6, Page: 819-843
2021
- 54Citations
- 49Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Salinity is a major problem affecting crop production all over the world. A wide range of adaptation strategies are required to overcome this problem. Endophytic bacteria can build a symbiotic association with their host to improve host plant salt tolerance. In this study, eighteen bacterial endophyte strains were isolated from two native halophytic plants Arthrocnemum macrostachyum and Spergularia marina, and identified as Bacillus, Brevibacillus, Agrobacterium, and Paenibacillus. These endophytic strains exhibit plant growth-promoting activities including phosphate solubilizing, ammonia production, biocontrol of phytopathogen, extracellular enzymatic activities, and indole-3-acetic acid production under normal and salinity stress. A pot experiment was conducted under field conditions to alleviate the harmful effects of soil salinity on bean (Vicia faba L.) by inoculating their seeds with the most potent bacterial isolates Bacillus subtilis (AR5) and Bacillus thuringiensis (BR1). Salinity treatments induced a significant decrease in both growth parameters and metabolic activities, while the activity of antioxidant enzymes and proline content was significantly increased. However, salinity stress induced higher contents of Na and decreased contents of N, P, K, Ca, Mg, and K:Na, it was found that treatment with B. subtilis (AR5) and B. thuringiensis (BR1) individually or in a combination mitigated the effect of salt stress and improved the plant height, shoot dry weights, proline contents, enzymes activities as well enhanced the accumulation of mineral nutrients in shoot plants. Our results concluded that treatment with co-inoculation of B. subtilis (AR5) and B. thuringiensis (BR1) exerted the greatest effect in alleviating the harmful effect of soil salinity stress and can be used as a suitable bio-approach to reclaim salinity-stressed soils.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know