Genetics of autosomal recessive intellectual disability
Medizinische Genetik, ISSN: 1863-5490, Vol: 30, Issue: 3, Page: 323-327
2018
- 35Citations
- 58Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations35
- Citation Indexes35
- 35
- CrossRef12
- Captures58
- Readers58
- 57
Review Description
In the last few years, next-generation sequencing has led to enormous progress in deciphering monogenic forms of intellectual disability. Autosomal dominant intellectual disability (ADID) and X chromosomal intellectual disability (XLID) have been the focus of research. Apart from metabolic disorders, autosomal recessive intellectual disability (ARID) is still behind, probably because it is more heterogeneous and less prevalent in industrial populations. The prevalence of ARID in a cohort of affected children of an outbred population is estimated to be about 10%, with an upward tendency in still unclarified cases. The risk for ARID in children of first cousins or closer is a magnitude higher than for children of unrelated parents. Taken together, it seems that children of related parents are at a 2 to 3 times higher risk for ID. There are no prevalent ARID genes, pathways, or protein complexes and the functions of the affected proteins are very diverse and limited not only to neurological aspects. Thus, in a regular case, there is no reasoning for picking a few genes for a first diagnostic step, and a genetic diagnosis of ID in general, and ARID specifically, is better made using large panels or exome sequencing. In addition, in the last few months, evidence has been growing that many ARID genes are pleiotropic and that the resulting phenotypes may have a broad spectrum. For an exhaustive deciphering of the genetics of ARID, we suggest research at the level of single genes rather than large meta-analyses.
Bibliographic Details
Walter de Gruyter GmbH
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know