Stress- and Time-Dependent Formation of Self-Lubricating In Situ Carbon (SLIC) Films on Catalytically-Active Noble Alloys
JOM, ISSN: 1543-1851, Vol: 73, Issue: 11, Page: 3658-3667
2021
- 6Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Low shear strength (30 MPa) organic films were grown in situ on PtAu surfaces via cyclic sliding contact in dry N with trace concentrations of ambient hydrocarbons. We present a systematic investigation of the stress- and time-dependent film formation. Steady-state friction coefficients were found to be as low as µ ~ 0.015 and inversely proportional to contact pressure, revealing non-Amontonian behavior. Above a Hertzian contact pressure of ~500 MPa, shear strength dropped, indicating an activated process. Raman spectroscopy identified non-uniformity in areal coverage and relative order with contact pressure. Regions of steady-state low-friction behavior exhibited spectra similar to DLC coatings. Atomic force microscopy was used to study the formation and growth of films at the nanoscale. Stress- and time-dependent measurements suggested a sublinear increase of film volume with time, and a transition from growth to wear at a Hertzian contact pressure of ~1.2 GPa.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know