Mechanical Properties of 3D-Printed Porous Poly-ether-ether-ketone (PEEK) Orthopedic Scaffolds
JOM, ISSN: 1543-1851, Vol: 74, Issue: 9, Page: 3379-3391
2022
- 15Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Poly-ether-ether-ketone (PEEK) has evolved to be the preferred biomaterial for orthopedic implants; however, its bioinert nature significantly limits its osseointegration property. Porous PEEK implants can effectively promote osseointegration, yet pores also decrease the scaffold’s load-bearing capacity. Hence, it is critical to developing an optimum pore-sized scaffold with favorable mechanical properties. In this study, we used 3D printing to develop PEEK scaffolds with precise pores ranging from 100 µm to 600 µm. We first experimentally determined the scaffolds’ compressive properties and then used finite element analysis (FEA) to investigate the scaffolds’ stress distribution and failure modes. Results indicate that 3D-printed PEEK with 300-µm pore size exhibits the highest yield compressive strength, and increasing the pore size beyond that would decrease the specimen’s yield strength. Furthermore, FEA denoted that the stress distribution is the maximum in the scaffold core along the longitudinal axis under compressive load and less on the scaffold’s outer shell. Finally, buckling simulation results confirmed that the specimens fail according to the second buckling mode with two curvatures, similar to the real-time experimental results. Our studies suggest that 3D-printed PEEK specimens with 300-µm pore sizes exhibit the best compressive yield strength suitable for orthopedic applications.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know