Effect of Plastic Deformation on the Mechanical Properties of Dual-Phase Steels Using Nanoindentation
JOM, ISSN: 1543-1851, Vol: 75, Issue: 7, Page: 2246-2255
2023
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
The mechanical properties of two advanced high-strength steels (AHSS), DP 1000 and DP 1200 dual-phase (DP) grades, under deformed and undeformed conditions, were investigated using nanoindentation, and the results were compared with those obtained from the conventional methods. To this goal, 3-point bending tests were applied to induce deformation in the samples. Before and after these tests, nanoindentations were performed at different forces and indentation depths. In addition to the hardness and modulus of elasticity values of the steels, the residual stresses on the samples after deformation were obtained by using the equations suggested in the literature, also with x-ray diffraction (XRD). Finite element (FE) modeling of 3-point bending and nanoindentation were performed to obtain stress–strain curves of the materials numerically. The stress–strain curves obtained by numerical analysis agree well with those reported in the literature. The variations of the hardness and modulus of elasticity values are narrower for deeper indentation (50 nm versus 200 nm), and the effect of deformation is more pronounced on the modulus of elasticity values (10–30% increase with the deformation) while hardness values increased with the effect of deformation, 10% at most.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know