PlumX Metrics
Embed PlumX Metrics

Characterization of water-repellent and corrosion-resistant superhydrophobic surfaces on galvanized steel

Journal of Coatings Technology and Research, ISSN: 1935-3804, Vol: 17, Issue: 6, Page: 1537-1548
2020
  • 4
    Citations
  • 0
    Usage
  • 11
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Corrosion-resistant superhydrophobic surfaces were successfully fabricated on galvanized steel through a wet oxidation treatment and stearic acid modification. In this work, the formation mechanism of superhydrophobic surfaces and structures were characterized with contact angle meter, scanning electron microscope (SEM), X-ray diffractometer (XRD), and Fourier transform infrared spectroscopy (FTIR). The surface properties of superhydrophobic and non-superhydrophobic surfaces were assessed by calculating surface free energy (γ) and work of adhesion (W). Moreover, the corrosion behavior and durability of superhydrophobic surfaces were examined in 3.5 wt% NaCl solution for up to 14 days. Superhydrophobic galvanized surfaces with WCAs of 168° (γ = 0.01 mN/m and 1.57 mN/m) and 162° (γ = 0.04 mN/m and W = 3.52 mN/m) were successfully obtained by modifying HCl etched surfaces with ethanolic stearic acid, with or without wet oxidation. According to the results, a zinc stearate layer on the surfaces effectively enhanced their corrosion resistance by numerous air pockets on the surfaces with hierarchical micro-/nanostructures that inhibited penetration by the NaCl solution. Moreover, superhydrophobic as-synthesized ZnO surface by wet oxidation had better corrosion durability than a superhydrophobic etched surface because of the strong physical and chemical bonding of stearic acid onto the as-synthesized ZnO nanorods.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know