Preparing self-cleaning superhydrophobic fiber@POSS garment fabric by UV-curing-induced high surface roughness
Journal of Coatings Technology and Research, ISSN: 1935-3804, Vol: 20, Issue: 1, Page: 249-260
2023
- 4Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: Self-cleaning outdoor garment fabrics are desired. However, traditional fiber cloths made from cellulose show a poor antifouling property owing to surface hydrophilicity. In this work, fiber@poly(vinyl silsesquioxane) (POSS) fabric with self-cleaning trait and superhydrophobicity was fabricated via surface ultraviolet (UV) curing (UV-induced click reaction). Its surface micromorphology and elemental distribution were studied. Compared with pristine fiber cloth, POSS-modified fiber cloth can exhibit the superhydrophobic, nonstick, and antifouling traits. Superhydrophobicity of the modified cloth is ascribed to synergy between high surface roughness (cage-like POSS; crosslinked (3-mercaptopropyl)trimethoxysilane; woven fibers) and low-surface energy (Si/-CH-). Self-cleaning property of modified cloth results from superhydrophobicity. After water/surface contact for 60 min, the static water contact angle of modified cloth surface can reach 158.7 ± 1.6°. Superhydrophobic durability of modified cloth reaches 120 h under acid/base/UV irradiation. After 100 abrasion cycles or 1 laundering cycle, the superhydrophobicity is maintained. The novelty of this work is a rapid UV-curing fabrication of self-cleaning POSS-modified fiber cloth. This work might open up a way for preparing advanced self-cleaning garment fabrics. Graphical abstract: [Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know