Comparison of 5- and 6-membered cyclic carbonate-polyisocyanate adducts for high performance coatings
Journal of Coatings Technology and Research, ISSN: 1935-3804, Vol: 20, Issue: 1, Page: 173-186
2023
- 1Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Nowadays, coatings need to fulfill a variety of requirements such as having excellent mechanical, chemical, and optical properties at low baking temperatures. On a large scale, polyisocyanates, amines or melamines are used as crosslinking agents in the coatings industry. In this work, a new self-crosslinking agent based on a hydroxy functional 6-membered carbonate with high ring tension and thus presumably lower baking temperature was synthesized and the behavior as self-crosslinking agent was compared to the crosslinking agent derived from the commercially available 5-membered glycerol carbonate. The hydroxy functional 6-membered carbonate monomer was synthesized enzymatically under mild reaction conditions from commercially available substances, linked to a hexamethylene diisocyanate trimer and self-polymerized afterward. NMR- and IR-spectroscopy and GC-MS analysis were found to be suitable techniques to characterize monomers and crosslinking agents. DSC measurements were performed to evaluate appropriate reaction parameters for the attachment reaction of the 6-membered cyclic carbonate to the polyisocyanate without ring opening. The progress of self-crosslinking has been followed by characteristic changes in IR spectra as well as time and temperature-dependent changes of storage and loss modulus while oscillating rheological crosslinking. Furthermore, glass transition temperatures of the resulting coating films are determined, and sol gel analysis was performed to estimate the degree of crosslinking. After application on steel, aluminum and glass plates application tests were performed. In addition to excellent mechanical and chemical properties, the coating film showed good adhesion to the surface and was colorless. Combining these properties with relatively low baking temperatures, 6-membered cyclic carbonate crosslinking agents could represent a new technology for the coatings industry.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know