Multi-objective factors optimization in fused deposition modelling with particle swarm optimization and differential evolution
International Journal on Interactive Design and Manufacturing, ISSN: 1955-2505, Vol: 16, Issue: 4, Page: 1669-1674
2022
- 6Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The design of any system contemplates the elaboration of a prototype of the entire system or some parts, before the manufacturing phase. Nowadays, rapid prototyping (RP) is widely used by the designers. Achieving good manufacturing performances needs to handle various process parameters. Most works deal with single objective process parameters. The reality is quite different and the processes involve conflicting objectives. This paper addresses the multi-objective factors optimization of the fused deposition modelling (FDM) technology. The problem is converted into a single one using the weighted-sum method and then solved by resorting to two nature-inspired computing techniques, namely particle swarm optimization (PSO) and differential evolution (DE). The results obtained are compared.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know