Electrochemical machining parameter optimization and prediction of performance using artificial neural network
International Journal on Interactive Design and Manufacturing, ISSN: 1955-2505, Vol: 18, Issue: 7, Page: 5015-5025
2024
- 1Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Electrochemical micromachining is promising technique used to machine metal matrix composites and hard to cut materials. In this research mixed L Orthogonal array experiments are used to along with 30 vol% of ethylene glycol mixed sodium nitrate electrolyte. The tool electrode is coated with ceramic coating whose diameter is 360 µm and Al7075 + 10 vol%BC metal matrix composites of thickness 500 µm is used as a workpiece. The experiments are optimized using grey relational analysis and most significant factor is found using Analysis of variance (ANOVA). As per the Grey relational Analysis (GRA) the optimal combination is 30 vol% of ethylene glycol,voltage of 9 V,duty cycle of 70% and electrolyte concentration of 35 g/L. As per the ANOVA, the most promising factor is electrolyte concentration which shows 46.36%. The Artificial Neural Network (ANN) model prediction value is 0.1675 and 1.1400 which is very close to GRA optimized values of machining rate and surface corrosion factors, ie 0.1667 and 1.1395 respectively.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know