Vitamin C Attenuates Sodium Fluoride-Induced Mitochondrial Oxidative Stress and Apoptosis via Sirt1-SOD2 Pathway in F9 Cells
Biological Trace Element Research, ISSN: 1559-0720, Vol: 191, Issue: 1, Page: 189-198
2019
- 28Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations28
- Citation Indexes28
- 28
- Captures21
- Readers21
- 21
Article Description
Increasing evidence has suggested an important role played by reactive oxygen species (ROS) in the pathogenesis of fluorosis. Accumulating evidence demonstrates that vitamin C administration ameliorate sodium fluoride (NaF)-induced oxidative stress. However, the potentially beneficial effects of vitamin C against NaF-induced cytotoxicity and the underlying molecular mechanisms of this protection are not fully understood. Here, we found that NaF stimulated cytotoxicity, increased mitochondrial reactive oxygen species (mROS) production, and induced apoptosis in F9 embryonic carcinoma cells. Consistent with this finding, NaF exposure was associated with decreased Sirtuin 1 (Sirt1) protein expression, thus promoted the acetylation of manganese superoxide dismutase (SOD2), a key enzyme involved in regulating mROS production. However, all NaF-induced mitochondrial oxidative injuries were efficiently ameliorated by overexpression of Sirt1 or incubation with Mito-TEMPO (a SOD2 mimetic). Moreover, pretreatment with vitamin C enhanced the expression of Sirt1 and decreased NaF-induced mitochondrial oxidative stress and apoptosis. Knockdown of Sirt1 blocked the vitamin C-mediated reduction in mROS and apoptosis via inhibiting Sirt1-SOD2 signaling. Importantly, sodium-dependent vitamin C transporter 2 (SVCT-2) siRNA was found to partially block the ability of vitamin C to promote Sirt1/SOD2 signaling. In summary, our data indicate that Sirt1 plays a pivotal role in the ability of vitamin C to stimulate SOD2 activity and attenuate mitochondrial oxidative stress, which partially through vitamin C receptor in NaF-induced F9 cells injury.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85058839529&origin=inward; http://dx.doi.org/10.1007/s12011-018-1599-0; http://www.ncbi.nlm.nih.gov/pubmed/30565018; http://link.springer.com/10.1007/s12011-018-1599-0; https://dx.doi.org/10.1007/s12011-018-1599-0; https://link.springer.com/article/10.1007/s12011-018-1599-0
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know